Evolutionary Synthesis of
Lossless Compression Algorithms with
GP-zip3

Ahmed Kattan and Riccardo Poli

Abstract— Here we propose GP-zip3, a system which uses
Genetic Programming to find optimal ways to combine standard
compression algorithms for the purpose of compressing files and
archives. GP-zip3 evolves programs with multiple components.
One component analyses statistical features extracted from the
raw data to be compressed (seen as a sequence of 8-bit integers)
to divide the data into blocks. These blocks are then pro-
jected onto a two-dimensional Euclidean space via two further
(evolved) program components. K-means clustering is applied
to group similar data blocks. Each cluster is then labelled
with the optimal compression algorithm for its member blocks.
Once a program that achieves good compression is evolved, it
can be used on unseen data without the requirement for any
further evolution. GP-zip3 is similar to its predecessor, GP-zip2.
Both systems outperform a variety of standard compression
algorithms and are faster than other evolutionary compression
techniques. However, GP-zip2 was still substantially slower
than off-the-shelf algorithms. GP-zip3 alleviates this problem
by using a novel fitness evaluation strategy. More specifically,
GP-zip3 evolves and then uses decision trees to predict the
performance of GP individuals without requiring them to be
used to compress the training data. As shown in a variety of
experiments, this speeds up evolution in GP-zip3 considerably
over GP-zip2 while achieving similar compression results,
thereby significantly broadening the scope of application of the
approach.

I. INTRODUCTION

In 2007 IBM researchers predicted that by 2010 the digital
contents available on the Internet would double every 11
hours. While this has clearly not happened, the growth in
demand for storage is still phenomenal. One of the paradoxes
of the evolution of technology is that, despite the rapidly
increasing need for storage and transmission of information,
there has been a lack of development in the area of com-
pression techniques.

Two principles are commonly accepted in the field of data
compression: a) there is no algorithm that is able to compress
all files, even by 1 byte, and b) less than 1% of all files can
be compressed losslessly by 1 byte [18]. In other words, it
is difficult to find a universal compression algorithm that
performs well on any type of data [18]. Thus, researchers in
the compression field tend to develop algorithms that work
with specific types of data, taking advantage of available
knowledge about the data, effectively devoting less atten-
tion to the development of generic compression algorithms.
Nevertheless such algorithms are extremely useful when the

Ahmed Kattan and Riccardo Poli are with the School of Computer
Science and Electronic Engineering, University of Essex, UK, email:
{akatta,rpoli } @essex.ac.uk.

nature and regularities of a given data file are not predictable.
For example, in archive systems, the users need to compress
huge amounts of different data, such as text, music, pictures,
video and so forth. A single universal compression model
would be preferable in this case.

In recent research we proposed a system called GP-
zip2 [11]. GP-zip2 is a lossless compression system based
on Genetic Programming (GP) (e.g., see [12], [13], [17]).
The main idea behind GP-zip2 is to divide the data into
fragments based on their statistical characteristics and then
match them with different compression models in such a
way as to minimise the total size of a compressed file. GP-
zip2 has achieved superior compression ratios in comparison
with state of the art compression algorithms. The main
disadvantage of GP-zip2 was the long training time required
by the system: 13 hours with the training set in [11]. This is
largely due to the costly fitness evaluation adopted in GP-zip2
which requires compressing data fragments using multiple
compression algorithms.

In this paper we propose a substantial improvement of
this system, called GP-zip3. This evolves and then uses
decision trees to predict the performance of the population’s
individuals. As we will see, predicting the performance of
individuals, rather than actually evaluating them, reduces
training time significantly and further improves the system’s
stability.

The structure of the paper is as follows. In Section II
some related work is briefly reviewed. Section III provides a
description of GP-zip2 (the system’s predecessors). In Sec-
tion IV a detailed description of the proposed improvement
is presented. This is followed by experimental results in
Section V. Finally, some conclusions are given in Section VI.

II. RELATED WORK

The problem of heterogeneous file compression has been
tackled by Hsu in [6]. Hsu’s system segmented data into
blocks of a fixed length (5 KB) and then compressed each
block individually. The system passed the blocks to an appro-
priate compression model by using a file-type detector which
could recognise ten different types of data. The approach also
used a statistical method to measure the compressibility of
the data. However, due to various restrictions, results were
not impressive.

Data compression requires highly specialised procedures.
Therefore, evolving data compression algorithms is far from
easy. One approach involves the use of GP in order to

find parameters for a compression algorithm, with the aim
of maximising the compression ratio (e.g., [20]). Another
approach is based on the use of GP for programmatic
compression [15]. This is quite powerful, at least in principle,
as was demonstrated by Nordin and Banzhaf, who used GP
to achieve lossy compression for images and sounds [15].

Other researchers have also used GP in developing com-
pression models. For example, [3] used GP for string com-
pression. Fukunaga and Stechert [4] developed a nonlinear
predictive model to compress grey scale images. Parent
and Nowe [16] used GP to evolve transformation programs
which reduced the entropy of the data thereby increasing the
compression ratios obtained when compressing a file using
lossless compression algorithms.

Our prior work with GP in the area of compression is
summarised in the next section.

III. THE GP-zIp FAMILY

The core idea of our research is to identify statistical
regularities in the data to be compressed, divide up the data
based on such regularities and match them with different
compression algorithms, with the aim of maximising the
lossless compression of the data.

A. GP-zip and GP-zip*

Our first attempts in this direction were performed with
two systems based on GP called GP-zip [8] and GP-zip* [9].
In both systems, the compression process for a file took place
during evolution. These systems learned the data patterns of
the file to be compressed and matched them with appropriate
compression models. The difference between the two systems
was in the representation for solutions: both were linear, but
the second one was more flexible and efficient. The approach
worked well providing very competitive compression perfor-
mance in comparison to a variety of standard techniques.

The big disadvantage of these systems, however, is that
the result of evolution is a recipe for compression, which is
appropriate only for the specific file or archive of files used
during evolution. In other words, the outcome of evolution
is not reusable. Also, both approaches are extremely slow.

We attempted to overcome these limitations in a more
recent system, called GP-zip2 [11]. The aim there was to
evolve compression algorithms which would work well with
a variety of data files, including unseen ones. This required
a complete re-design of the decision making and learning
strategies used in our systems.

Since the GP-zip2 system shares several components with
GP-zip3, below we describe it in some detail.

B. GP-zip2

GP-zip2 uses the following five compression algorithms
in its compression pool: Arithmetic Coding (AC) [19],
Lempel-Ziv-Welch LZW [14], unbounded Prediction by Par-
tial Matching (PPMD) [2], Run Length Encoding (RLE) [5],
and Boolean Minimisation [7]. Each individual in GP-zip2’s
population (and, thus, also the outcome of evolution) is a
program which processes the raw byte-series (seen as a

) Y ™
bt S N
/ \ ’// \\
r s o L
NN ‘\F Y N \
/’j \‘\ r’/’ \l
oY \ NN NN
]
zy &S 53
N> ~ _/ A 4 / N\
\ Splitter Feature-extractor X Feature-extractorY |
\ /
N /

Fig. 1. GP-zip2 and GP-zip3 individual.

digital signal) to be compressed and performs two major
functions: segmentation of the signal based on its statistical
features and classification of the identified segments based
on their compressibility with a particular compression algo-
rithm. To do so, GP was provided with a language that allows
extracting statistical features out of the byte-series. Table I
illustrates the primitive set of GP-zip2.

The same compression algorithms and primitive sets are
used also in GP-zip3. GP-zip2 and GP-zip3 also use the same
representation for individuals. Each individual has multi-tree
representation composed of one splitter tree and two feature-
extraction trees (without automatically defined functions,
see [12], [17]), as depicted in Figure 1. These all use the
same primitive set (see Table I), although the size of the
array passed to the List terminal for the splitter trees is fixed,
while it is variable for the feature-extraction trees, as we will
clarify below.

The main job of splitter trees is to split the given raw byte-
series into meaningful segments. By meaningful we mean
that each segment can be effectively compressed using one
of the compression algorithms available. An effective splitter
tree should be able to detect the statistical differences within
the data to be compressed and divide the file into different
segments based on them. For example, if the given data was
a document file that contained text and graphical charts, a
good splitter tree would notice the change in the byte-series
values from the text to the pictures and vice versa. Moreover,
an ideal splitter tree might even detect different fragments
within the same data type (e.g., a page full of blank lines
within the text or white area in a picture).

To decide where to split, the system moves a sliding
window of size L over the given byte-series with steps of
S bytes. In our experiments we used L = 300 bytes and
S = 50 bytes. At each step, the data in the window are
stored in the List terminal and the splitter tree is evaluated.
Its output is a number which is an abstract representation of
the features of the signal in the window. The system then
splits the byte-series at a particular position if the difference
between the output of the splitter tree in two consecutive
windows is more than 6 (a predefined threshold). In our
implementation 6 = 10.

TABLE I
GP-z1P2 AND GP-ZIP3 PRIMITIVE SET

Primitive Arity Input type(s) Output type
Median, Mean, Avg. deviation, Stdev, Vari- 1 Array of integers(0-255) Real number
ance, Signal size, Skew, Kurtosis, Entropy

Plus, Minus, Div, Mul 2 Real number Real number

Sin, Cos, Sqrt 1 Real number Real number

List 0 NA Array of integers(0-255)

The main job of the two feature-extraction trees in our
GP representation is to re-represent the segments identified
by the splitter tree and project them into a two-dimensional
Euclidian space using a composition of primitives from
Table I. To this end, each segment identified by the splitter
tree is stored in the List terminal and the two feature-
extraction trees are evaluated. Their numeric outputs can be
seen as composite features. They are used as the coordinates
of a point in a two-dimensional space, which can be seen as a
re-representation of the corresponding segment of the data.’
In principle, segments that share similar statistical features
will form dense groups.

After this transformation of the segments, during train-
ing/evolution an unsupervised pattern classification approach
is applied to them in order to discover regularities in the
training data files. In particular, K-means clustering is used
to organise segments (as represented by their two composite
features) into groups in such a way that each group is best
compressed with the same compression algorithm. With this
algorithm, objects within a cluster are similar to each other
but dissimilar from objects in other clusters. The system
labels each cluster according to the dominant algorithm used
to optimally compress the segments (more details provided
in section IV-B). This is costly as it requires trying every
available compression algorithm on each segment (as we will
see, this is where GP-zip2 and GP-zip3 differ). In this phase,
the best compression ratio achieved for the whole dataset is
also computed since the contribution of the splitter tree to the
fitness of an individual is determined by such a compression
ratio.

After evolution is complete, we save the clusters found
by K-means for the best program in the population together
with its splitter and feature extraction trees.

In normal operations or in a testing phase, unseen files
can be compressed using the trees and clusters identified
during the training phase. When a test file is processed, the
file is divided into segments by the splitter tree. These are
then fed into the feature-extraction trees and projected into a
two-dimensional space. A segment is assigned to the cluster
whose centroid is closest (in terms of Euclidian distance)
to the corresponding two-dimensional feature vector. The
segment is then compressed with the compression algorithm
associated to closest centroid.

I'We tested the use of one, two and three feature-extraction trees, and
found that two provided the best compromise between evolution speed and
accuracy.

GP-zip2 significantly outperformed its predecessor as well
as most other compression algorithms. It exceeded the per-
formance of all the compression algorithms tested on het-
erogeneous files and produced competitive results in relation
to other types of data. In addition, the division of data files
into blocks presents the advantage that one can decompress a
section of the data without processing the entire file. This is
particularly useful, for example, if the data are decompressed
for streaming purposes (such as music and video files). Also,
the decompression process can be parallelised.

While GP-zip2 presents all these interesting properties,
the system suffers from one main disadvantage: its long
training time (approximately 13 hours for the training files
used in [11]). This is due to the heavy computations associ-
ated with the fitness evaluation which requires compressing
segments — a lengthy process — multiple times (with all
available compression algorithms).

1V. GP-zIpr3

The aim of GP-zip3 is to significantly reduce the long
training time required by GP-zip2 and take us one step
further towards an ideal compression system. This would
be a system that can rapidly adapt to the needs of users
by producing compression systems that can quickly identify
incompatible data fragments (both at the file level and within
each file) in an archive, and to allocate the best possible
compression model for each, in such a way as to minimise
the total size of the compressed version of the archive.

In GP-zip2, the system optimally compresses the divided
segments individually (trying every available algorithm on
each segment) and measures the total compression ratio.
Thus, in order to evaluate individuals, the system has to com-
press the training set many times with multiple compression
models. This is the bottleneck of the training phase.

An idea to accelerate this step would be to use some
form of prediction of the compression ratio that would be
achieved by different compression models when applied to
each data segment. If the prediction was accurate and faster
than the actual compression with a model, presumably one
could speed up the fitness evaluation in GP-zip2 by using
such a prediction, without modifying the course of evolution
too much.

However, predicting compression ratios is a very chal-
lenging task. So, before attempting to employ this strategy
within an evolutionary compression system, we decided to
test whether the problem could be solved at all to an

acceptable degree. This was done in [10], where we tested
an approach based on GP to predicting data compression
ratios when applying different compression algorithms. The
approach was successful and forms the basis for the new
fitness evaluator of GP-zip3. We describe this in detail below.

A. Estimating Compression Ratios

To estimate compression ratios we used GP. The system
evolves predictors which are specialised for a particular
compression algorithm. Programs have three components.
One component analyses statistical features extracted from
the byte frequency distribution of a file in order to come
up with a compression ratio prediction for that file. Another
component does the same but by analysing statistical features
extracted from the files raw ASCII representation instead.
A further (evolved) component acts as a decision tree to
determine the overall output (compression ratio estimation)
returned by an individual. The decision tree produces its
result based on a series of comparisons among statistical
features extracted from the files and the outputs of the two
prediction components. The evolved decision tree has the
choice to select either the outputs of the two compression-
prediction components or, alternatively, to integrate them into
an evolved mathematical formula.

In [10], experimentation with this technique has produced
accurate estimations for different files when applying differ-
ent compression models. Also, the estimation of compression
was much faster than performing the actual compression
itself. Naturally, the evolved prediction models work well
only for the particular compression algorithm they have been
trained to predict. Thus, the user has to evolve a prediction
model for each compression algorithm of interest.

In GP-zip3, prediction programs evolved with this ap-
proach were used to determine the best way to compress
the segments produced by the splitter tree, rather than trying
every available algorithm on each segment. This has accel-
erated the training phase significantly. Naturally, the evolved
estimation programs are not 100% accurate. Thus, the system
could occasionally allocate a sub-optimal compression model
to some of the segments. We expected this to reduce GP-zip’s
ability to produce high performance compression algorithms.
However, as we will see, this did not happen, although GP-
zip3 has an inferior generalisation ability than its predecessor.

Naturally, the system proposed in [10] was designed and
used for the prediction of the compression ratio of entire files.
So, we had to customise this system in such a way as to make
it work well with the segments of files produced by GP-zip’s
splitter tree. To achieve this, the training set was divided into
blocks of predefined lengths, namely 200, 350, 450, 800,
1000, 2000, 3000 and 5000 bytes. These blocks sizes were
selected so as to approximately match the typical segments
produced by splitter trees. These blocks were treated by GP
as independent files for which we wanted to estimate, as
accurately as possible, the compression ratio achieved by
a specific technique. Compression estimation modules were
evolved for all the compression models available to GP-zip3,
i.e., AC, PPMD, BooleanM, LZW and RLE.

These five pre-evolved estimation modules were then used
in GP-zip3 as explained in the next section.

B. Fitness Measurement

The calculation of the fitness is divided into two parts.
Each part contributes with equal weight to the total fitness,
which is the sum of the two.

The fitness contribution of the splitter tree is measured
by estimating the total compression ratio on the training set.
This is computed by evaluating the pre-evolved estimation
functions (see previous section) for the segments identified
by the splitter. The system will label the segments with the
algorithm providing the highest estimated compression ratio.

The estimated compression ratios obtained in the previous
phase are then used to evaluate the fitness contribution of the
splitter tree. (Segments’ labels are retained, since they are
also used in evaluating the quality of the feature-extraction
trees, as we will see shortly.)

More specifically, let ES.(S;) be the output of
the estimation function for algorithm =z, where z €
{AC,PPMD, LZW, RLE, BooleanM} and let segment i be
denoted as S;. Furthermore, let n be the total number
of segments. Then, the fitness of the splitter tree can be
expressed as:

Yoi max, (ES;(S:))
File Size

Note that this approach is computationally much less expen-
sive than actually compressing each segment in the training
set as was required by the fitness function used in GP-zip2.

The second part of an individual’s fitness is the classifica-
tion accuracy provided by the feature-extraction trees. After
performing the clustering using K-means, the quality of the
clustering is evaluated by measuring clusters homogeneity
and separation.

The homogeneity of the clusters is calculated in the
following manner. Since the (estimated) optimal compression
algorithm for each segment is already known from the previ-
ous step, the clusters are labelled according to the dominant
algorithm. The fitness function rates the homogeneity of
clusters in terms of the proportion of data points — segments
— that are being optimally compressed with the algorithm
that labels the cluster.

Using the information that was obtained concerning the
segments and their optimal compressions, it is easy to find
the total number of segments that should be compressed
with a particular compression model. Any deviations from
this optimal value, due to clusters containing extra members,
should be discouraged. Thus, a penalty term was used within
the fitness function in order to penalise extra members in the
clusters.

The Davis Bouldin Index (DBI) [1] was used to measure
cluster quality. DBI is a measure of the nearness of the
clusters members to their centroids and the distance between
clusters centroids. A small DBI index indicates well sep-
arated and grouped clusters. Therefore, the negation of the
DBI index was added to the total feature extraction fitness in

1
FSplitter = 5 X [100 - (

x 100)].

order to push the evolution to separate clusters (i.e., minimise
the DBI). Consequently, the DBI here is treated as a penalty
value; the lower the DBI the lower penalty applied to the
fitness.

More formally, the clusters’ homogeneity can be expressed
as follows. Let H be a function that calculates the homogene-
ity of a cluster and C; be the i*" cluster. Furthermore, let K
be the total number of clusters and A the penalty term. Then,

S H(C) = X

FHomogeneity = K

Thus, the fitness of the feature-extraction trees is

FFeatm’e—e.ttration = 5 X (FHomogeneity - DBI)
and the total fitness can be expressed as:
Fitness = FFeaturefea:tration + FSplitter~

C. Search Operators

GP-zip3 uses the same search crossover and mutation
operators as GP-zip2. If the ¥ individual of the population is
denoted as I; and T is the c*”* tree of individual 7, where ¢ €
{splitter, feature—extractory, feature—extractor,}, the
system selects an operator with a predefined probability for
each T, In crossover, a restriction is applied so that splitter
trees can only be crossed over with splitter trees. However,
the system is able to freely crossover feature-extractions trees

at any position.

V. EXPERIMENTS

Experiments were carried out on various archives that
contain both homogeneous and heterogeneous sets of data.
The main aim of the experiments was to investigate the
performance and speed of GP-zip3 in comparison with its
predecessors. Some of the archives that were used for testing
were composed of data types that are similar to those used in
the training set, while others contained different data types,
to which the algorithm had not been exposed during training.

Table II illustrates the contents of the training set. Files
were chosen so as to be representative. In other words, they
are likely to be compressed by users, and their sizes are
within the normal range (they are neither not too big nor
too small). Our training archive contained 12 different data
types for a total size of 332KB. To ease the comparison of
GP-zip3 against other members of the GP-zip family, the
same 12 large archives used to test previous methods in [8],
[9], [11] were used for testing. The files within the archives
are grouped in such a way to ensure each archive contains
a unique combination of file types that did not exist in the
training set. Table IV reports the contents and the size of
each archive.

GP-zip3 was compared to the standard compression al-
gorithms listed previously, as well as GP-zip, GP-zip* and
GP-zip2. In addition, Winzip and WinRar — two of the
most popular compression algorithms in regular use — were
included in the comparison.

TABLE 11
TRAINING FILES FOR GP-z1P3

File types
pdf, exe, CPP code, gif, jpg, xls,
ppt, mp3, mp4, txt,xml

Total size of training set
332 KB

TABLE III
PARAMETER SETTINGS FOR OUR GP RUNS.

Parameter Value
independent runs 16

population size 100

maximum number of generations 30

crossover probability 50%

mutation probability 50%

selection type tournament selection (size 5)
termination criterion max number of generations

The experiments presented here were performed using the
parameter settings in Table III. Note that it is practically
impossible to determine the best fitness level that could
be achieved with our training set. So, there is no special
terminating condition for GP-zip3. Simply, the system runs
until the maximum number of generations is reached.

Since GP search is stochastic, GP-zip3 performance has
been measured through 16 different runs, each of which
trains the system and uses the output of the training to
compress the 12 different test archives. The aim is to obtain
a reasonably general compression algorithm that performs
well, on average, for all test files.

Table V summarises the 16 GP runs. The first row reports
the average compression ratio in all runs, archive by archive.
The second row illustrates the standard deviation of the
achieved compression ratios in all runs for each file, to show
the system’s robustness when dealing with different archives.
The third row provides the results of the best evolved
compression program. By way of comparison, the fourth row
reports the results of the worst evolved compression program,
in order to show the performance of GP-zip3 in its worst
cases. The last two rows report the best and worst achieved
compression ratio respectively for each file in any run.

The 16 programs evolved by GP-zip3 were reviewed and
the best program for each test archive was selected in order
to compare it against the other compression algorithms.

Table VI reports the best achieved compression ratio for
each file and compression system.> In all cases GP-zip3
produced extremely competitive compression results, outper-
forming traditional compression algorithms with consider-
able margin in most of the cases. Nonetheless, it is clear that
GP-zip2 is slightly superior to GP-zip3. This is no surprise;
the reason is that GP-zip2 is getting accurate information
during the training phase while GP-zip3 has to work with a
noisy fitness evaluation. Actually, it is remarkable that GP-
zip3 managed to stay this close to GP-zip2.

2Reporting the best performance achieved by programs evolved in differ-
ent runs may seem unfair. However, this level of performance is achievable,
albeit with some computational cost: all one needs to do is to compress a
file with each of the 16 evolved programs and pick the shortest compressed
version.

TABLE IV
TEST FILES FOR GP-ZIP3

Archive Files Size (KB)
Text English translation of The Three Musketeers by Alexandre Dumas, Anne of 4,822
Green Gables by Lucy Maud Montgomery, 1995 CIA World Fact Book
Exe DOW Chemical Analysis program,Windows95/98NetscapeNavigat,Linux 2.x, 4,824
PINE e-mail program
Archivel Mp3 Music, Excel sheet, Certificate card replacement form PDF http:// 1,474
www.padi.com/, Anne of Green Gables by Lucy Maud Montgomery (text
file)
Archive2 PowerPoint slides, JPEG file, C++ source code, Mp4 Video (5 seconds) 2,458
Archive3 GIF file ,Unicode text file (Arabic language), GP-zip* executable file, Xml file 1,384
Archive4* GP-symbolic regression system, MS Access database file, Text file. 34,069
Archive5* JPG (picture of faces), Word file (rsum), Tif (Fax cover), WMV movie 6:25 19,309
minutes
Archive6 Windows95/98 Application, JPG picture of sea and sky, Text book, Tif picture 2,518
lena, Resume.xml
Archive7 Exe application (file splitter program), JPG picture, Text file (book), XML 694
database
Archive8* Java code (Tiny_GP), Mov (high definition file movie), PS file (Journal paper) 56,883
Archive9* PDF file, Docx Word 2007, FLV video 3:09 minutes 2,793
Canterbury corpus* English text, fax image, C code, Excel sheet, Technical writing, SPARC exe, 2,276
English poetry, HTML, lisp code, GUN Manual Page, play text.
* Contains data types to which the algorithm has not been exposed during training.
TABLE V
SUMMARY OF RESULTS IN 16 INDEPENDENT GP RUNS
File Archivel Archive2 Archive3 Archive4 ArchiveS Archive6 Archive7 Archive8 Archive9 Canterburylext Exe
Compression Avg. | 40.93 30.84 60.79 78.76 3432 4648 5586 364 31.03 70.01 59.8 49.79
Std 7.27 19.19 9.39 17.11 18.25 548 17.51 1445 19.27 854 2202 6.98
Best Run 58.34 47.67 61 90.12 51.12 51.12 7124 50.11 4793 80.61 803 52.89
Worst Run 3253 312 4193 5029 744 48.16 70.76 1842 2.17 67.64 79.83 5991
Best Compression | 58.34 53.86 71.34 90.87 55.12 55.61 7248 5256 53.63 81.17 803 62.11
in all runs
Worst Compression | 28.29 3.12 4193 458 688 324 32 1839 2.17 52.72 26.88 37.68
in all runs

GP-zip3 required only two and a half hours on average
to perform the learning process, while GP-zip2 required 13
hours, which corresponds to a fivefold speedup. Both GP-
zip2 and GP-zip3 take between 12 and 15 minutes to perform
the actual compression on a modest 2.21GHz AMD PC
system.

The GP-zip family (including GP-zip3) has been slightly
outperformed by WinRar-Best on the Canterbury corpus.
This dataset is often used as a reference for comparison of
compression algorithms, and hence it might seem disappoint-
ing to see the GP-zips come second in this particular com-
parison. However, because this corpus is used so frequently,
parameters in highly optimised compression software, such
as WinRar, are often tuned to maximise compression on
such a dataset, with potentially deleterious consequences
(more on this below) for other data types. Indeed, the high
compressibility of the dataset indicates that, despite it being

heterogeneous, effectively the entropy of the binary data it
contains may be atypically low (making it similar to a text
archive). Consequently, it is felt that the overall performance
of GP-zips, in realistic situations, is better represented by its
behaviour on our collection of archives rather than simply
the Canterbury corpus.

The estimation approach used to accelerate the evaluation
of the splitter trees acted as noise (i.e., produced errors in the
estimated values) on the training set. While in small amounts,
noise can improve a learning process by increasing the
algorithm’s generalisation, beyond a certain level noise may
result in deleterious consequences on the learning process
and limit the algorithm’s abilities to generalise its knowledge
beyond the training set. In order to compare the generalisa-
tion performance of GP-zip3 against its direct predecessor,
the average of averages of the achieved compression in all
runs for file types in and outside the training set for both GP-

TABLE VI
PERFORMANCE COMPARISON (NEGATIVE VALUES MEAN THAT THE COMPRESSED VERSION OF A FILE WAS LARGER THAN THE ORIGINAL).

File WinZip- WinRar- PPMD BooleanM LZW RLE AC GP- zip GP- GP- GP-
bzip2 Best zip* zip2 zip3
Archivel 3293 34.036 3332 3.77 1.13 -10.2 9.98 49.49 63.43 61.12 58.34
Archive2 3.9 3.19 3.9 2.81 -4398 -11.48 0.69 N/T 58.7 54.19 53.86
Archive3 6449 6599 6436 23.28 43.62 9.16 27.62 N/T 75.05 74.79 71.34
Archive4 9096 93.13 90.73 49.21 -24.74 -372.81 5824 N/T N/T 90.96 90.87
Archive5 7.97 11.17 8.64 8.64 -36.17 -5401.27 2.72 N/T N/T 55.39 55.12
Archive6 50.61 56.32 49.07 4.99 -3.65 -5002.04 11.88 N/T N/T 71.05 55.61
Archive7 68.64 64.21 70.76 11.34 33.69 -4377.29 3398 N/T N/T 73.96 72.48
Archive8 15.67 14.41 18.74 5.77 -47.74 -7003.42. 5.39 N/T N/T 52.82 52.63
Archive9 2.94 3.3 2.28 2.877 -41.54 -6333.82 0.3 N/T N/T 53.66 53.63
Canterbury | 80.48 85.14 81.19 38.01 15.61 6.549 41.4 N/T 81.58 81.18 81.17
Exe 57.86 64.68 61.84 11.42 35.75 -4.66 17.46 61.82 62.02 61.85 62.11
Text 77.88 8142 7995 2424 56.47 -11.33 37.77 79.95 80.23 80.29 80.3
N/T: not tested
Bold numbers are the highest
TABLE VII
PERFORMANCE COMPARISON: TRAINED VS. UN-TRAINED FILES TYPES 70
Algorithm | Average compression for | Average compression for e
trained files types in all | untrained files types in all 50
runs runs a0
Gpzip2 | 47.18% 13.16%
Gp-zip3 50.10% 49.21% 30
20
10
zip2 and GP-zip3 were measured. The untrained files’ are the 0 | [

archives that consist of data types to which the algorithm had
not been exposed during training. Those files in particular
are: Archive4, Archive5, Archive8, Archive9 and Canterbury.
As illustrated in Table VII, GP-zip3 has a slightly better
average than its predecessor. This indicates the algorithm
stability with the provided test archives. However, GP-zip3
may perform less well when dealing with archives that are
completely different from the training set. This aspect will
be further investigated in future research.

The experimental results of 16 runs for GP-zip2 and GP-
zip3 were compared. Figure 2 shows them as histograms.
The first column reports the average of averages of the
compression ratio for all test files in all runs. The second
and the third columns show the average compression for all
test files for the best and worst evolved program, respectively.
The last column reports the standard deviation for all runs. It
is clear from the figure that GP-zip3 has more stability and
a higher average in most cases.

VI. CONCLUSIONS

In this paper an improvement to GP-zip2 was proposed;
the new improvement is referred to as GP-zip3. In GP-zip3,
the aim was to overcome the problem of the extended training
time required by GP-zip2. To achieve this we eliminated
the need for repetitive compression of the training set with
multiple compression algorithms in the fitness evaluation.
We proposed to use evolved estimation functions to predict

Averageof Runs Compression Compression Std

average of Bast Average of worst
Run Run

m GP-zip3 © GP-zip2

Fig. 2. GP-zip2 vs. GP-zip3 generalisation comparison

the compression ratio achieved on a segment of data with
different compression algorithms without applying the actual
compression algorithms. It was found that doing so reduced
the training time significantly and improved the system’s
stability.

Experimentation with GP-zip3 demonstrated that despite
the much shorter learning time in comparison to GP-zip2,
GP-zip3 achieves almost the same level of performance in
terms of compression ratios.

The disadvantage of GP-zip3 is that it depends on evolved
estimation functions. Thus, the user must spend extra time
evolving accurate estimation functions. Also, the user has to
evolve an estimation function for each of the compression
algorithms available to GP-zip3. This, however, needs to be
done only once. When estimation functions are available,
GP-zip3 can efficiently be applied to evolve general compres-
sion algorithms as well as compression algorithms tailored

to specific domains of application.

This research could be extended in many different ways.
In the future the use of a form of hyper-GP-zip will be
investigated. This would choose the best program from a
pool of solutions for each unseen archive, based on statistical
features from the data.

Clustering data fragments using more sophisticated classi-
fication techniques is likely to provide further improvements
to the systems performance. It would also be beneficial to
explore whether the use of additional primitives such as the
geometric mean, the mode, the quartiles, etc. could further
improve GP-zip3’s performance. Treating each component of
the fitness function as a separate objective, rather than adding
them up, might also provide significant benefits.

Moreover, currently, each compression model the system
can use is treated as a black box. A promising extension for
this research would be to decompose each model into more
elementary entities and allow the system to use compositions
of multiple such elements. Such a lower-level language could
express both classical and novel compression algorithms.

Another interesting research avenue concerns the idea of
storing the state of GP runs in such a way as to make it
possible to restart evolution if it becomes apparent that the
current best compression model is unsuitable for new data
files.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees
for their helpful and constructive comments.

REFERENCES

[1] J. Bezdek and N. Pal. Some new indexes of cluster validity. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 28(3):301—
315, 1998.

[2] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length
contexts for PPM. In Data Compression Conference, pages 5261,
1995.

[3] I. De Falco, A. lazzetta, E. Tarantino, A. Della Cioppa, and G. Traut-
teur. A Kolmogorov complexitybased genetic programming tool for
string compression. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages 10-12.

[4] A. Fukunaga and A. Stechert. Evolving nonlinear predictive models
for lossless image compression with genetic programming. In Genetic
Programming 1998: Proceedings of the Third Annual Conference,
1998.

[5] S. W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory,
IT-12:399-401, 1966.

[6] W. H. Hsu and A. E. Zwarico. Automatic synthesis of compression
techniques for heterogeneous files. Softw. Pract. Exper., 25(10):1097—
1116, 1995.

[7]1 A. Kattan. Universal lossless data compression with built in encryp-
tion. Master’s thesis, School of Computer Science and Electronic
Engineering, University of Essex, 2006.

[8] A. Kattan and R. Poli. Evolutionary lossless compression with GP-
ZIP. In J. Wang, editor, 2008 IEEE World Congress on Computational
Intelligence, Hong Kong, 1-6 June 2008. IEEE Computational Intelli-
gence Society, IEEE Press.

[9] A. Kattan and R. Poli. Evolutionary lossless compression with GP-

ZIP*. In GECCO ’08: Proceedings of the 10th annual conference on

Genetic and evolutionary computation, 2008.

A. Kattan and R. Poli. Genetic programming as a predictor of data

compression saving. In P. Collet, editor, Evolution Artificielle, 9th

International Conference, Lecture Notes in Computer Science, pages

13-24, 26-28 Oct. 2009.

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

A. Kattan and R. Poli. Evolutionary synthesis of lossless compression
algorithms with GP-zip2. In Submitted to GPEM. Springer, 2010.

J. Koza. Genetic programming: on the programming of computers by
means of natural selection. The MIT press, 1992.

W. B. Langdon and R. Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

A. Lempel. Compression of individual sequences via variable-rate
coding. [IEEE Transactions on Information Theory, 24(5):530-536,
1978.

P. Nordin and W. Banzhaf. Programmatic compression of images and
sound. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 345-350, Stanford University, CA, USA, 28-31
July 1996. MIT Press.

J. Parent and A. Nowe. Evolving compression preprocessors with
genetic programming. In GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference.

R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic
Programming. Published via http://lulu.com, 2008. (With
contributions by J. R. Koza).

I. M. Pu. Fundamental Data Compression. Butterworth-Heinemann,
Newton, MA, USA, 2005.

I. Witten, R. Neal, and J. Cleary.
compression. 1987.

M. J. Zaki and M. Sayed. The use of genetic programming for adaptive
text compression. Int. J. Inf. Coding Theory, 1(1):88-108, 20009.

Arithmetic coding for data

